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Abstract 

Wildfire is a major disturbance agent in Arctic boreal and tundra ecosystems that emits 

large quantities of atmospheric pollutants, including PM2.5. Under the substantial Arctic 

warming which is two to three times of global average, wildfire regimes in the high northern 

latitude regions are expected to intensify. This imposes a considerable threat to the health of the 

people residing in the Arctic regions. Alaska, as the northernmost state of the US, has a sizable 

rural population whose access to healthcare is greatly limited by a lack of transportation and 

telecommunication infrastructure and low accessibility. Unfortunately, there are only a few air 

quality monitoring stations across the state of Alaska, and the air quality of most remote Alaskan 

communities is not being systematically monitored, which hinders our understanding of the 

relationship between wildfire emissions and human health within these communities. Models 

simulating the dispersion of pollutants emitted by wildfires can be extremely valuable for 

providing spatially comprehensive air quality estimates in areas such as Alaska where the 

monitoring station network is sparse. In this study, we established a methodological framework 

that is based on an integration of the Hybrid Single-Particle Lagrangian Integrated Trajectory 

(HYSPLIT) model, the Wildland Fire Emissions Inventory System (WFEIS), and the Arctic-



Boreal Vulnerability Experiment (ABoVE) Wildfire Date of Burning (WDoB) dataset, an Arctic-

oriented fire product. Through our framework, daily gridded surface-level PM2.5 concentrations 

for the entire state of Alaska between 2001 and 2015 for which wildfires are responsible can be 

estimated. This product reveals the spatio-temporal patterns of the impacts of wildfires on the 

regional air quality in Alaska, which, in turn, offers a direct line of evidence indicating that 

wildfire is the dominant driver of PM2.5 concentrations over Alaska during the fire season. 

Additionally, it provides critical data inputs for research on understanding how wildfires affect 

human health which creates the basis for the development of effective and efficient mitigation 

efforts. 
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1. Introduction 

Wildfires, both of natural and anthropogenic origins, occur in a wide variety of 

ecosystems around the world (Jolly et al., 2015). In addition to imposing strong impacts on the 

carbon cycle (Balshi et al., 2009; Gibson et al., 2018), energy budget (Randerson et al., 2006), 

hydrological cycle (Shakesby and Doerr, 2006), and causing substantial economic losses (Gill et 

al., 2013), wildfires are also known to be a major threat to public health. Wildfires emit a range 

of gaseous and particulate pollutants in high quantities, including PM2.5 (particulate matter with 

a diameter of 2.5 μm or less) (Matz et al., 2020; Naeher et al., 2007; Sullivan et al., 2008). 

Typically resulting from incomplete combustion and condensation of combustion gases (Naeher 

et al., 2007), PM2.5 is a pollutant with potent toxicity and has been shown to be associated with 

a wide array of negative health outcomes, including asthma (Fan et al., 2016; Hahn et al., 2021), 

lung cancer (Wei et al., 2017), coronary heart disease (Hu, 2009), premature death (Kloog et al., 

2013), diabetes (Chen et al., 2013), and adverse birth outcomes (Kloog et al., 2012). 

Wildfires are the major disturbance agent in circumpolar boreal forests (Kasischke and 

Turetsky, 2006) and tundra (Hu et al., 2015) - the two northernmost biomes on Earth. Over the 

past decades, temperatures in these two biomes have increased at alarming rates that are two to 

three times the global average (AMAP, 2021; Schuur et al., 2015). One of the consequences of 



such substantial warming is an intensification of the wildfire regimes, particularly within boreal 

forests (Balshi et al., 2009; Flannigan et al., 2005; Stocks et al., 1998). Boreal wildfires are a 

major emitter of pollutants for two main reasons. First, the median size of wildfires is generally 

larger in boreal forests than in temperate forests in North America (Chen et al., 2021a). Even 

though more than half of global boreal forests are considered under a certain level of 

management, because of their vast expanse and remote nature, active fire suppression is not 

implemented in most of boreal forests except for a few regions where boreal forests border 

relatively densely-populated areas, such as southern Canada and Fennoscandia (Gauthier et al., 

2015; Melvin et al., 2017; Parisien et al., 2020). Consequently, many boreal wildfires fall under 

the “let burn” policy, allowing many of them to burn through large pieces of land. Second, boreal 

wildfires are pervasive. They are an intrinsic part of the ecological succession of boreal tree 

species (Johnstone and Chapin, 2006; Taylor and Chen, 2011). Their role in boreal forest 

ecosystems is so crucial that the boreal forest region is a mosaic of forest stands of different ages, 

successional stages, and stature shaped by wildfires (Erni et al., 2018; Gromtsev, 2002; Macias 

Fauria and Johnson, 2008; Weir et al., 2000). In Alaska, 75 % of burned areas since the 1940s 

are located in boreal forests, according to our calculation based on the Alaska Large Fire 

Database (ALFD) and the World Wide Fund (WWF) Terrestrial Ecoregions dataset (Olson et al., 

2001). Because of the large size and pervasiveness of boreal wildfires, boreal wildfires consume 

large quantities of biomass, which, in turn, leads to substantial releases of PM2.5 (Ikeda and 

Tanimoto, 2015; Sapkota et al., 2005).  

Fire-driven PM2.5 emissions are a major contributor to poor air quality events throughout 

the fire season, which nominally lasts between May and September, although the majority of 

burning usually occurs between early June and the end of August (Abatzoglou and Kolden, 

2011; Grabinski and McFarland, 2020). The conventional approach to monitoring air pollution, 

which relies on surface policy-grade air quality monitoring stations, is extremely limited in 

Alaska. There are fewer than 30 Environmental Protection Agency (EPA)-grade stations for the 

entire state and most of them are located within urban environments (according to EPA’s 

website: https://www.epa.gov/o utdoor-air-quality-data). Alaska is sparsely populated with only 

two urbanized areas (i.e., those above the 50,000 population threshold) and an additional 13 

urban clusters (i.e., 2500–49,999 population) (Alaska Department of Transportation and Public 

Facilities, 2022). About a third of the Alaskan population resides in rural areas (U.S. Department 



of Agriculture, 2019) and many of them live in remote communities with limited access to health 

care (Goldsmith, 2008; Hahn et al., 2021; HRSA, 2021). Surface station-based monitoring 

provides an extremely limited view of air quality for the state as a whole and is not 

representative of conditions outside large urban centers. Expanding the network of policy-grade 

(e.g., EPA-grade) or even low-cost air quality stations, such as PurpleAir 

(https://www2.purpleair.com/), to achieve an appropriate level of air quality assessment coverage 

for rural populations would be prohibitively expensive and their maintenance would be 

unfeasible. It is, therefore, crucial to develop PM2.5 modeling approaches that can deliver air 

quality assessment across Alaska as a whole, irrespective of population distribution.  

While health studies have investigated the impact of health outcomes and specific 

pollutants (e.g., ozone), they often focus on human exposure to the mix of pollutants constituting 

a certain size, with PM2.5 being common (Alexeeff et al., 2021; Anderson et al., 2012; Atkinson 

et al., 2014; Chen and Hoek, 2020; Xing et al., 2016). In retrospective health studies, PM2.5 

datasets are commonly linked to patient hospitalization records both temporally and spatially for 

exposure assessment (Sun et al., 2010; Zhu et al., 2020). The exposure datasets and spatio-

temporal matching techniques used to assign an individual’s exposure with health outcomes in 

air pollution studies varies by study objective and design. However, earlier studies generally 

used coarser resolution (e.g., city-level) data from point source monitors to assign exposure. 

Now, the standard practice in exposure assessment is to use datasets derived from advanced 

computer modeling techniques that incorporate Earth observations from satellites (Chen and 

Hoek, 2020; Diao et al., 2019). The type of gridded PM2.5 concentration map presented in this 

study can help the community understand spatio-temporal trends of air pollution. In particular, 

air pollution concentrations can be used in retrospective health studies to understand the health 

impacts of exposure to air pollution (Anderson et al., 2012; Hahn et al., 2021), allowing for a 

more accurate estimate of spatiotemporal exposure of an entire population, which, in turn, allows 

for estimation of both short and long-term effects (Manisalidis et al., 2020).  

A common approach for delivering gridded PM2.5 concentration estimates for areas 

outside existing air quality monitoring networks relies on inputs from Earth-observing satellites. 

Specifically, the relationship between surface-measured PM2.5 concentrations and, most 

frequently, satellite-based estimates of aerosol optical depth (AOD) and auxiliary meteorological 

and other spatially explicit information is identified through the application of statistical models 



and, subsequently, extrapolated over the remaining areas. However, the extreme paucity of 

monitoring stations and their placement in highly selective areas substantially limits the 

predictive power of such statistical relationships.  

Over much of Alaska, anthropogenic sources of PM2.5 emissions are overall scarce 

(except for a few communities adjacent to major highways and gas/oil production sites, as shown 

in Fig. 1), which means wildfire smoke is likely the dominant source of PM2.5 for Alaska’s rural 

communities during the fire season. Based on this hypothesis, we further hypothesize that 

modeling the cumulative emission and transport of PM2.5 from all known wildfires presents a 

viable option for estimating the PM2.5 concentrations at a state level. In recent years, a few 

research efforts have been taken to model the transport of wildfire smoke and the resultant 

dispersion of PM2.5, including the BlueSky smoke modeling framework (Larkin et al., 2009), 

the National Oceanic and Atmospheric Administration’s (NOAA) Smoke Forecasting System 

(SFS) (Rolph et al., 2009), the University of Alaska Fairbanks smoke forecast system 

(UAFSmoke) (Grell et al., 2011), the High-Resolution Rapid Refresh- Smoke (HRRR-Smoke) 

model (Ahmadov et al., 2017), and most recently the HYSPLIT-based Emissions Inverse 

Modeling System for wildfires (HEIMS-fire) (Kim et al., 2020). While all these smoke modeling 

systems cover Alaska to different degrees, all of them are operation-based with the goal to 

provide smoke forecasts over a certain period of time into the future. As a result, their historical 

model runs have not been maintained to allow for being used in retrospective health analyses 

(with the exception of HRRR-Smoke, which is being systematically archived by the University 

of Utah, however, Alaska is excluded from the archive). The FireWork (Pavlovic et al., 2016) 

model is another smoke forecasting system produced by Environment and Climate Change 

Canada and the Canadian Forest Service. None of the above smoke forecasting systems are 

suitable to analyze spatial and temporal trends covering an extended time period throughout 

Alaska. This highlights a need for a systematically produced, gridded surface-level PM2.5 

concentration dataset that covers a relatively long period of time (to be coupled with long-term 

public health data). In this study, utilizing a state-of-the-art fire emission system, coupled with an 

atmospheric transport model, the Hybrid Single-Particle Lagrangian Integrated Trajectory 

(HYSPLIT) model (Draxler and Hess, 1998; Stein et al., 2015), we developed a system where 

the atmospheric concentrations of PM2.5 that are attributable to wildfires were estimated for the 

entire state of Alaska over 15 years. 



 

Figure 1. Distribution of wildfires in Alaska and Canada since the 1940s. Fire boundaries are provided by ALFD. Major road network 
data was acquired from the U.S. Census Bureau (2021). Pink areas are moderate to high potential areas for oil and gas development 
that are designated by the Alaska Department of Natural Resources (2022). 
 

2. Materials and methods 

2.1. Study area  

The study area of this project is the state of Alaska, US. With an area of >1.7 million 

km2, most of which are located north of 55◦N, Alaska is the largest and the northernmost state of 

the US. About 17 % of Alaska’s population resides in rural areas (Fall, 2019), and about 15 % of 

the population is indigenous, which is higher than any other US state (U.S. Census Bureau, 

2020). In terms of biogeography, Alaska is dominated by two terrestrial biomes: boreal forests 

and tundra. In both of these biomes, wildfires are a major disturbance agent (Hu et al., 2015; 

Kasischke and Turetsky, 2006) and they happen annually during the fire season, which typically 



lasts from May through September (Grabinski and McFarland, 2020). Fig. 1 shows the 

distribution of known burned areas in Alaska as reported by ALFD, which maintains a historical 

wildfire record in Alaska dating back to the 1940s. Most burned areas are located within Interior 

Alaska between the Brooks Range and the Alaska Range (Supplementary Fig. 1).  

 

2.2. Methodology  

The methodology of this study can be broken down into three main components. First, we 

estimated PM2.5 emissions for all wildfires that took place in Alaska between 2001 and 2015. 

Second, we simulated the atmospheric transport of the estimated smoke emissions with the 

HYSPLIT dispersion model, which allowed us to estimate cumulative surface-level daily PM2.5 

concentrations from wildfire events over the entire state of Alaska. Third, accuracy assessments 

and intercomparisons were conducted against PM2.5 observations recorded by air quality 

monitoring stations and remotely sensed data in Alaska to evaluate the performance of the 

established methodology in relation to the existing products. Last, the spatial-temporal patterns 

of fire-induced PM2.5 concentrations were analyzed, particularly in relation to rural 

communities across Alaska. Limited by the availability of the emission dataset at the inception of 

this project, the temporal domain of the methodology that we developed was the fire seasons 

(i.e., May–September) over 2001–2015. The 15-year time period covered in this study, while 

missing some of the more recent large fire years, is sufficient for analyzing spatio-temporal 

PM2.5 patterns and trends in Alaska.  

 

2.2.1. PM2.5 emission estimation  

A fundamental parameter for estimating fire emissions is burned area. Following Chen et 

al. (2021b), which shows that global burned area products likely underestimate true burned areas 

in the high northern latitude regions including Alaska, we decided to adopt a regionally-adapted 

burned area product, i.e., the Arctic-Boreal Vulnerability Experiment (ABoVE) Wildfire Date of 

Burning product (Loboda et al., 2017) (WDoB), as our burned area input. By merging ALFD fire 

perimeters (delineated based on field/air surveys or satellite imagery) (Murphy et al., 2000) with 

the timing of fire as recorded by the Moderate Resolution Imaging Spectroradiometer (MODIS) 

MCD14ML active fire product (Giglio et al., 2003), WDoB provides estimates of daily area 

burned for each wildfire event, which is a piece of information not reported by ALFD. There are 



certain limitations associated with WDoB, including its burn scars containing unburned islands 

(Chen et al., 2020) and the fact that not all burn scars’ exact dates can be identified based on the 

MCD14ML product (in which case the dates on which the fires were reported were used; Loboda 

et al., 2017). However, we believe that the strengths of WDoB outweigh its limitations. It is 

capable of offering a much more complete spatial representation of burned areas within Alaska 

than other burned area products (Chen et al., 2021b; Murphy et al., 2000).  

While there are several wildfire emission estimation systems available, including the 

Global Fire Emissions Database (GFED; Giglio et al., 2013), few offer the flexibility to pick the 

burned area input of our choice. Due to its capability to ingest WDoB, our specified burned area 

product, the Wildland Fire Emissions Inventory System (French et al., 2014) (WFEIS; 

wfeis.mtri.org) was chosen to estimate PM2.5 emissions. WFEIS provides a geospatial 

implementation of the Seiler and Crutzen (1980) method for emission estimation, which takes 

into account a set of key parameters, including burned area, fuel loading, and the fraction of 

consumed fuel. WFEIS allows for the integration of a variety of burned area products as the 

input for burned area, as long as the burned area products contain information about the timing 

of the fire events. Fuel loading inputs were derived from fuelbed maps, which were intersected 

with burned areas to identify the distribution of fuel loading within burns. Spatially explicit 

fuelbeds were derived from LANDFIRE 30-m Existing Vegetation Type (EVT) basemaps with 

EVTs mapped to Fuel Characteristic Classification System (FCCS) fuelbeds (https://www.la 

ndfire.gov/fccs.php). Different LANDFIRE versions represent ground conditions in years 2001, 

2008, 2010, 2014, 2016 (REMAP), and 2020. In WFEIS, burned areas are intersected with the 

most recently available LANDFIRE version for the burned date (e.g., all burned areas occurring 

before 2008 use the 2001 LANDFIRE basemap; burned areas from 2008 to 2009 use the 2008 

LANDFIRE basemap; burned areas from 2010 to 2011 use the 2010 LANDFIRE basemap; etc.). 

Fuel distribution and temporally specific fuel moisture estimates corresponding to the timing and 

location of fire events, as determined by WDoB, were used as inputs to the US Forest Service 

Pacific Northwest (PNW) Research Station’s Consume (v5.0) software, which calculates fuel 

consumption using empirically-derived and fuel strata-specific consumption equations to 

produce estimates of PM2.5 emissions. The PM2.5 emissions factors used in Consume are those 

from the recently published Smoke Emissions Reference Application (SERA) database (Prichard 

et al., 2020). Consume’s fuel moisture inputs include 1000-h, duff, and litter fuel moistures. In 



WFEIS, these fuel moisture inputs are derived from the Global Fire Weather Database (GFWED; 

Field et al., 2015) daily MERRA-2 bias-corrected precipitation product. This product includes 

Canada Forest Fire Weather Index (FWI) System metrics which are translated to the Consume 

fuel moisture inputs: 1000-h fuel moisture is derived from FWI Drought Code quartiles; duff fuel 

moisture is derived from FWI Duff Moisture Code; and litter fuel moisture is derived by 

subtracting FWI Fine Fuel Moisture Code (FFMC) from 100. More details concerning WFEIS 

are given in French et al. (2014). Although evaluating WFEIS’ performance in estimating 

wildfire emissions (which is challenging due to a lack of “ground truth” emission data) is beyond 

the scope of this paper, Faulstich et al. (2022) suggests that WFEIS may be preferable to other 

emission estimation systems, including GFED and Fire INventory from the National Center for 

Atmospheric Research (NCAR) (FINN; Wiedinmyer et al., 2011).  

 

2.2.2. PM2.5 dispersion simulation and concentration estimation  

In this study, we employed HYSPLIT (Draxler and Hess, 1998; Stein et al., 2015), an 

atmospheric transport model developed by the National Oceanic and Atmospheric 

Administration (NOAA), as the technical core of our simulation of PM2.5 dispersion after 

pollutant particles were emitted by wildfires. Capable of both projecting the dispersion and 

transport and tracing the source of origin for a great variety of gas- and particle-based pollutants, 

HYSPLIT has been used in numerous research efforts to simulate the transport of wildfire-

emitted pollutants (Ansmann et al., 2018; Vernon et al., 2018; Zhao et al., 2020). The 

implementation of HYSPLIT requires 1) a compatible three-dimensional meteorological data 

grid that covers the spatial and temporal domains of the simulations data grid and 2) proper 

parameterization of a series of parameters that are suitable for the pollutant in question. We used 

the North American Regional Reanalysis (NARR) dataset (Mesinger et al., 2006), available for 

Alaska from 1979 to the present, to model meteorological conditions because NARR is the 

meteorology dataset with the highest spatial resolution (32 km) while covering Alaska for the 

entire time period of interest among the datasets with which HYSPLIT is directly compatible. To 

parameterize other components of HYSPLIT runs, we adopted a series of parameter values 

established in previous studies, as shown in Table 1. We would like to note that due to the 

computation-intensive nature of this project, a sensitivity analysis testing the different parameters 

was not within the scope of this work. Therefore, the adopted values represent reported values in 



published research that was conducted in reasonably similar environmental and ecological 

settings.  

 
Table 1. Parameters used for the HYSPLIT models. The values of particle diameter and density were adopted from Rolph et al. 
(2009). The resolution was set to 0.1◦ because we believe this is a resolution where most wildfire smoke plumes can be resolved 
and to have a large enough grid to prevent undersampling of the number of particles in the output concentration grid. Injection 
height was set to 100 m following a series of sensitivity tests that we conducted with varying parameters (not reported in this 
manuscript). Averaging height was set to 100 m to be consistent with our reference dataset (van Donkelaar et al., 2021; van 
Donkelaar et al., 2016). Dry and wet deposition parameters were adopted from Kim et al. (2020). All other parameters were set to 
the default values. AGL stands for above ground level. 

Output 
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Injection 
Height 

(AGL, m) 

Averaging 
Height 

(AGL, m) 

Particle 
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(µm) 

Particle 
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(g/cm3) 

Pollutant 
Molecular 

Weight 
(gram/mole) 

In-cloud 
Removal 

Below-cloud 
Removal 

0.1° 100 100 0.8 2  12 4×104 5×10-6 

 

 

Figure 2. Distribution of the 0.1º grid cells containing EPA’s air quality monitoring stations. Blue and red correspond to 1st and 
2nd tier cells, respectively. The names of the 1st tier cells are labeled in blue. The inset shows a zoomed-in view of the Fairbanks 
area. 
 



Because our HYSPLIT simulations were run at 0.1◦, we aggregated the estimated fire 

emission data acquired during the previous step (since they were produced at higher spatial 

resolutions) to produce cumulative emissions for each 0.1◦ grid cell where emissions were 

estimated daily. This resulted in a total of 69,508 emission sources identified between May 1 and 

September 30 during 2001–2015 across Alaska. For each emission source, a separate HYSPLIT 

model simulation was initiated and run through September 30 of that year. The single-source 

simulation outputs of all HYSPLIT models were totaled per grid cell per day, leading to the daily 

PM2.5 concentration maps for the state of Alaska for May–September from 2001 to 2015.  

 

2.2.3. Accuracy assessment and intercomparison  

We conducted an assessment of the simulated PM2.5 concentrations as delivered by our 

approach against the daily PM2.5 concentration data as reported by the Environmental Protection 

Agency (EPA) air quality monitoring stations (https://www.epa.gov/outdoor-air-quality-data). 

While point source observations are very rarely representative of conditions across large (e.g., 

0.1◦ cell) areas and should be expected to vary substantially in quantitative estimates (Xue et al., 

2017), they provide a useful benchmark in assessing the ability of our models to capture 

temporal variability in PM2.5 concentrations and the magnitude of this variability. To be 

compatible with the simulated PM2.5 concentrations, we assigned the point-based daily PM2.5 

readings to represent the entire 0.1◦ grid cell. In cases where multiple monitoring stations were 

found within the same 0.1◦ cell (e.g., in Anchorage and Fairbanks), their PM2.5 readings for the 

same day were averaged to represent the mean PM2.5 concentration for that grid cell on that day. 

The station data were used in both qualitative and quantitative analyses against which the 

estimated PM2.5 concentrations were compared. In the qualitative analysis, the estimated and 

recorded PM2.5 concentrations for the same locations were plotted together. This allowed us to 

visually evaluate the consistency between the estimated and recorded trajectories. There are in 

total 24 0.1◦ grid cells in Alaska that contain EPA air quality monitoring stations operating 

between 2001 and 2015, and they are shown in Fig. 2. Considering the PM2.5 concentrations 

recorded by the EPA stations are relatively low most of the time, we divided the 0.1◦ grid cells 

that contain EPA stations into two tiers. We considered the 0.1◦ cells that recorded more than 

three high PM2.5 concentration days (defined in this project as daily PM2.5 concentrations 

exceeding 35 μg/m3, following the EPA’s air quality standard (Cao et al., 2013)) within any 



given year as 1st tier cells, with the rest all being 2nd tier. Fig. 2 shows the distribution of the 

0.1◦ grid cells, including their tier levels. For simplicity, we only visualized the plots from this 

analysis for the 1st tier cells. In the quantitative analysis, we calculated normalized mean bias 

(NMB) and correlation coefficient (R) between the estimated and recorded concentrations, 

following the suggestion by (Emery et al., 2017). The formulas for calculating NMB and R are 

shown below (E and O stand for estimated and observed concentrations, respectively, and i 

indicates the pairing of estimated and observed concentrations by cell and date). The data 

recorded by both 1st and 2nd tier cells were used for this analysis. 

NMB =
∑(Ei − Oi)
∑(Oi)

 × 100 

R =
∑[(Ei − E�) × (Oi − O�)]

�∑(Ei − E�)2 × ∑(Oi − O�)2
 

An intercomparison between our model estimates with two existing products that provide 

PM2.5 concentration estimates for most of Alaska was integrated into our accuracy assessment 

against EPA’s station data. The first dataset is a global PM2.5 concentration (hereafter referred 

to as “GlobalPM”) dataset developed by van Donkelaar et al. (2021). Improved upon their 

previous work (van Donkelaar et al., 2016), GlobalPM provides monthly estimates of global 

surface-level PM2.5 concentrations by fusing the outputs of several satellite-based remote 

sensing instruments, including MODIS, the Multi-angle Imaging SpectroRadiometer (MISR), 

and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) based on simulated AOD-PM2.5 

relationships calibrated using ground-based observations across the globe (van Donkelaar et al., 

2021). The spatial resolution (0.1◦) and temporal coverage (1998–2021) of GlobalPM allow for a 

direct comparison between GlobalPM and our PM2.5 concentration estimates. Since GlobalPM 

PM2.5 concentrations are provided monthly, the intercomparison involving GlobalPM was 

conducted at the month- and fire season-level (i.e., May–September of every year) between 2001 

and 2015.  

The second dataset that our model estimates were compared to is the FireWork product 

(Pavlovic et al., 2016). FireWork is an expansion of the Regional Air Quality Deterministic 

Prediction System (RAQDPS), a system developed by Environment and Climate Change Canada 

(ECCC) to monitor and forecast the impacts of anthropogenic pollutants on the air quality in 

North America, particularly Canada (Moran et al., 2015; Pavlovic et al., 2016). RAQDPS is one 



configuration of the Global Environmental Multiscale model – Modeling Air quality and 

Chemistry (GEM-MACH) (Gong et al., 2015), which simulates the transportation of a series of 

pollutants, including PM2.5. FireWork differs from RAQDPS in a way that its emission 

inventories include wildfire emissions (Pavlovic et al., 2016), thus allowing for a more 

comprehensive accounting of the PM2.5 dynamics in the region. The FireWork dataset provides 

multiple surface-level PM2.5 concentration estimates in a day at 1 km, which is why it was 

upscaled to 0.1◦ and subsequently averaged to the daily interval. Additionally, while FireWork 

covers 2013–2015 and 2017–2018 temporally, the intercomparison was conducted based on the 

data for 2013–2015 because it overlaps with the temporal span of our results.  

 

2.2.4. Spatio-temporal analyses  

We conducted a set of analyses based on the simulated daily PM2.5 concentrations to 

highlight the spatio-temporal patterns of the fire-induced PM2.5 distribution in Alaska. First, we 

calculated two metrics for the entire state of Alaska: maximum PM2.5 concentration (MC) and 

the number of days with mean PM2.5 concentration exceeding 35 μg/m3 (ND). We chose these 

two metrics because of their different focuses: MC reflects the peak PM2.5 concentration levels, 

whereas ND is a better metric demonstrating sustained air pollution. Literature has suggested that 

both peak and long-term effects are important aspects of wildfires’ negative impacts on air 

quality and public health (Aguilera et al., 2021; Alman et al., 2016; Black et al., 2017; Cleland et 

al., 2022; Koman et al., 2019) and we thus think they should both be assessed. We calculated 

MC and ND at three levels: each month, each year, and over 15 years. At the monthly level, 

metrics were calculated based on all daily gridded maps from the same months over the 15-year 

period. At the yearly level, they were calculated based on all maps from the same year. At the 

15-year level, all daily maps were used to generate two maps (one for MC and one for ND). The 

resultant metric maps at all three levels were examined visually to identify the spatio-temporal 

patterns of fire-induced PM2.5 concentrations. Second, we analyzed the two metrics that were 

calculated above in the context of Alaskan rural communities to assess wildfires’ short-term and 

long-term impacts on the air quality in rural Alaska. Following the definition of rural areas given 

by the U.S. Census Bureau (U.S. Census Bureau, 2022), rural communities were defined in our 

project as the U.S. Census Places (including cities and census-designated places) whose 

population is lower than 2500 as reported by the U.S. Census Bureau in 2020. Third, to 



demonstrate our system’s ability to reconstruct the temporal distribution of surface-level PM2.5 

concentrations for rural areas that are beyond the coverage of existing EPA air monitoring 

networks, we selected four rural communities and generated their daily PM2.5 concentrations 

during fire seasons over the 15-year period to highlight the inter-regional differences in 

wildfires’ impact.  

 

3. Results  

3.1. Results of accuracy assessment and intercomparison  

Among the 0.1◦ grid cells that contain EPA stations across Alaska, only five cells in 10 

separate years recorded more than three days within a given year with daily PM2.5 

concentrations exceeding 35 μg/m3. Fig. 3, which was the result of the qualitative assessment 

involving station data, shows the intra-annual variations of our simulated PM2.5 concentrations 

in relation to the recorded PM2.5 concentrations in these 10 years for the 1st tier cells. As can be 

seen, our models were able to reconstruct the intra-annual distribution of the PM2.5 

concentrations as recorded in all five 1st tier cells. Specifically, during the early and late growing 

season, when wildfire activities tend to be low, estimated PM2.5 concentrations stay consistently 

low. In contrast, when PM2.5 concentrations experience suddenly elevates as a result of 

wildfires, our model estimates were able to reflect such sharp increases.  

The results of the quantitative assessment based on all cells are shown in Table 2. The 

correlation coefficient (R) between estimated and recorded PM2.5 concentrations varies 

substantially inter-annually (ranging between � 15 % and 83 %). When examining the pattern of 

this inter-annual variability, it appears that the magnitude of yearly R is positively correlated 

with the mean daily recorded PM2.5 concentration (Supplementary Fig. 2). In other words, the 

correlation between simulated and recorded PM2.5 concentrations is higher when the air quality 

is worse. In 2004 and 2015, which were the two largest fire years within the 15-year period 

(Grabinski and McFarland, 2020), R calculated between our model outputs and recorded data 

show very high values (i.e., 83 % and 73 %, respectively). As for NMB, it tends to be negative 

when the mean PM2.5 concentrations are low, and vice versa. This means that our model tends 

to overestimate PM2.5 concentrations when the air quality is poor and underestimate when the 

air quality is good.  

 



 
Figure 3. Comparisons between simulated (black lines) and recorded (red dots) PM2.5 concentrations. The blue dashed line 
indicates the threshold of 35 µg/m3, which is EPA’s daily PM2.5 standard (Cao et al. 2013). Each panel corresponds to one of the 
5 1st tier 0. 1º cells as described in Section 2.2.3. 
 



Table 2. Accuracy metrics calculated based on the simulated and recorded daily mean PM2.5 concentrations. N stands for the 
number of value pairs (between simulated and recorded PM2.5 concentrations). 

Year N Daily Mean  
Simulated PM2.5 (µm/m3) 

Daily Mean  
Recorded PM2.5 (µm/m3) NMB (%) R 

2001 24 6.49 5.01 29.50 0.10 
2002 196 3.05 6.00 -49.19 0.33 
2003 56 2.14 3.98 -46.16 -0.15 
2004 163 15.79 19.79 -20.22 0.83 
2005 167 5.86 5.62 4.18 0.42 
2006 78 3.67 4.55 -19.28 0.29 
2007 203 2.52 3.46 -27.09 0.10 
2008 73 0.73 2.85 -74.46 0.29 
2009 342 16.39 12.65 29.56 0.60 
2010 489 2.33 4.57 -48.96 0.34 
2011 264 2.00 4.57 -56.36 0.05 
2012 255 1.50 3.40 -55.68 0.12 
2013 496 4.88 6.64 -26.49 0.48 
2014 240 7.46 6.23 19.86 0.32 
2015 529 14.77 9.79 50.85 0.73 
All 3575 6.98 7.15 -2.31 0.63 

 

Daily PM2.5 concentrations as estimated by FireWork are available in 5 of the 10 panels 

in Fig. 3 (green lines in Panels d, e, g, h, and i). When compared with our HYSPLIT model 

estimates, it can cleanly be seen that FireWork daily PM2.5 concentrations are consistently low 

throughout the fire seasons and are thus unable to reflect the high concentration episodes that can 

be seen from both our model estimates and EPA’s station data. It was for this reason that the 

subsequent intercomparison with GlobalPM at the monthly and fire season levels excluded the 

FireWork product from the analysis.  

The results of the assessment comparing monthly and fire season mean PM2.5 

concentrations between our HYSPLIT models and GlobalPM are shown in Fig. 4 and 

Supplementary Tables 1 and 2. Overall, our model outputs show a very good consistency (R = 

0.84 for monthly-level comparison and R = 0.86 for fire season-level comparison) between the 

two. The similarity between our model estimates and GlobalPM can also be seen from the 

comparison of these two products against EPA’s station data. As shown in the left panel in Fig. 

5, the monthly mean PM2.5 concentrations as estimated by our HYSPLIT models and GlobalPM 

over the 0.1◦ grid cells where EPA’s recorded PM2.5 concentration data were available are both 

consistent with EPA’s recorded data, with GlobalPM showing a higher correlation with the 



station data than our HYSPLIT model estimates. However, when only the high PM2.5 

concentration values (i.e., monthly mean PM2.5 concentrations as reported by EPA’s station data 

that are larger than 20 μm/m3) are considered, the correlation between our model estimates and 

EPA’s station data is slightly higher than that of GlobalPM’s (Fig. 5, right panel). Considering 

GlobalPM and our model estimates PM2.5 concentrations based on completely independent data 

sources, the high consistency between them, at least over the 0.1◦ grid cells where EPA’s station 

data is available, lends strong support for the validity of our methods. Interestingly, there seems 

to be a noticeable discrepancy between the spatial distribution of surface PM2.5 concentrations 

as estimated by our models and GlobalPM across Alaska. As shown in Supplementary Fig. 3, the 

spatial pattern of monthly mean PM2.5 concentrations for June, July, and August of 2004 (which 

was one of the largest fire years between 2001 and 2015) is clearly different between our model 

estimates and GlobalPM, with the monthly mean maps based on our models showing more 

spatial details than GlobalPM. Additionally, GlobalPM’s monthly mean PM2.5 concentration 

maps seem to be more strongly affected by terrain, as many high-elevation areas are shown to 

have higher PM2.5 concentration values, particularly in August 2004 (Supplementary Fig. 3, 

panel f).  

 

3.2. Spatio-temporal analyses based on model outputs  

Our analysis based on the simulated PM2.5 concentrations during the fire seasons over 15 

years shows distinct spatio-temporal patterns. Temporally, high levels of fire-induced PM2.5 is 

typically present during years with a large number of acres burned relative to other years in 

Alaska (i.e., 2004, 2005, and 2015; Figs. 6-7) and large fire months (i.e., June, July, and August; 

Figs. 8-9). Spatially, the areas that suffer the highest level of impacts by fire-emitted PM2.5 

largely concentrate in the area between the Alaska Range and the Brooks Range. Mountainous 

regions, as well as areas that are north of the Brooks Range and south of the Alaska Range, seem 

to be much less affected by fire-emitted PM2.5. Such a general spatial pattern is visible in both 

MC (Figs. 6, 8, and 10) and ND (Figs. 7, 9, and 10) maps, indicating a consistency in the 

distribution of areas that suffer high short-term and high long-term fire-induced smoke impacts. 

Very noticeably, Interior Alaska is heavily impacted by wildfire smoke, as it is where the highest 

15-year MC and longest 15-year ND are found (Fig. 10). HYSPLIT simulations suggests a 



significant portion of Interior Alaska experienced >100 high concentration days during 2001–

2015. In southern Alaska, including Anchorage, wildfires’ impact on air quality is much smaller.  

 

 
Figure 4. Scatterplot demonstrating the relationship between monthly (a) and yearly (b) mean PM2.5 concentration as simulated 
by our models and GlobalPM as shown in Supplementary Tables 1 and 2. 
 

 
Figure 5. Scatterplots comparing HYSPLIT and GlobalPM monthly mean PM2.5 concentrations against the data recorded by the 
EPA’s air monitoring stations. Left: all spatially and temporally concurrent observations are used. Right: only the data that are 
matched with monthly mean PM2.5 concentrations as reported by EPA’s stations that are larger than 20 μm/m3 are visualized. 
 



 
Figure 6. MC maps for each year between 2001 and 2015 generated based on our simulations. 



 
Figure 7. ND maps for each year between 2001 and 2015 generated based on our simulations. 
 



 

 
Figure 8. MC maps for each month between May and September of 2001-2015 generated based on our simulations. 



 

 

 
Figure 9. ND maps for each month between May and September of 2001-2015 generated based on our simulations. 



 

 

 

Figure 10. Air quality metric (a: MC; b: ND) maps generated based on our simulations over May-September of 2001-2015. RC 
stands for rural communities, as defined in Section 2.2.4. Blue and pink crosses indicate the four rural communities whose intra-
annual PM2.5 concentrations were examined in the third analysis described in Section 2.2.4. 

When examining the spatial patterns of the simulated PM2.5 concentrations in the 

context of the distribution of rural communities across Alaska, it is clear that wildfires impose 

substantial impacts on the air quality of many communities. Fig. 11a shows a pie chart that was 

generated based on an overlay of rural communities with the MC map generated over the 15-year 

period as shown in Fig. 10a. As can be seen, the MC values of 88 % of rural communities in 

Alaska over the 15-year period reached or exceeded unhealthy air quality levels (i.e., Unhealthy, 

Very Unhealthy, and Hazardous; U.S. Environmental Protection Agency, 2021), which means 

the vast majority of the communities have experienced unhealthy fire-induced air conditions at 

least once during that time. About a half (46 %) of the communities’ 15-year MC exceeded 250.4 

μm/m3, which is considered “Hazardous” and is the worse air quality level according to the U.S. 

Environmental Protection Agency’s Air Quality Index (AQI) categories (U.S. Environmental 

Protection Agency, 2021). In terms of ND, we found that the median number of high PM2.5 

concentration days across all Alaskan rural communities is 17 (green dashed line in Fig. 11b). 

Considering the median number of high concentration days for the entire state of Alaska is very 

close at 19 (blue dashed line in Fig. 11b), this means that about half of Alaskan rural 

communities have experienced air quality levels that are worse than the average condition across 

the state over the 15-year period.  



 

 

Figure 11. Results from the analyses that were conducted based on simulated PM2.5 concentration in the context of Alaskan rural 
communities. Panel a): proportions of AQI categories that the 15-year MC values of Alaskan rural communities fall into. There 
are 6 AQI categories in total: Good (0-12 µg/m3), Moderate (12.1-35.4 µg/m3), Unhealthy for Sensitive Group (35.5-55.4 µg/m3), 
Unhealthy (55.5-150.4 µg/m3), Very Unhealthy (150.5-250.4 µg/m3), and Hazardous (>250.5 µg/m3) (U.S. Environmental 
Protection Agency 2021). Panel b): histogram generated based on the ND values for all Alaskan rural communities between 2001 
and 2015. The blue and green dashed lines represent the mean values across the entire state of Alaska and all rural communities, 
respectively. 

In addition to state-wide analyses which produced Fig. 11, we also conducted analyses 

that focused on specific rural communities to demonstrate the localized spatio-temporal 

fluctuations of fire-induced PM2.5 concentrations. The results of these analyses are shown in 

Figs. 12 and 13. Fig. 12 shows the intra-annual distribution of surface-level PM2.5 

concentrations according to our simulations for four rural communities in 2004, 2005, and 2015, 

which were the three largest fire years in Alaska between 2001 and 2015 (Grabinski and 

McFarland, 2020). As can be seen, even though Alaska was heavily affected by wildfire smoke 

during these three years (Figs. 6 and 7), the impact imposed by smoke varies substantially 

locally. For example, in 2005, three out of the four communities experienced peak PM2.5 

concentrations in August, whereas in Venetie (yellow lines in Fig. 12), the peak episodes 

occurred at the beginning of July. For another example, Venetie and Deltana (purple lines in Fig. 

12), two relatively spatially adjacent communities, experienced drastically different temporal 

PM2.5 patterns in 2005: while Venetie experienced several highly polluted episodes over the fire 

season, Deltana was barely affected by wildfire smoke in that year. A further examination on the 

air quality dynamics in Venetie and Deltana was conducted through Fig. 13, where daily AQI 

values for these two rural communities over July–August in 2001–2015 are visualized based on 

our model outputs. As can be seen, the impact of wildfire smoke on these two communities 



varies substantially over the 15-year period, as the spatio-temporal distribution of unhealthy days 

differ considerably.  

 

 

 

Figure 12. Intra-annual variations of surface-level PM2.5 concentrations according to our simulations at four rural communities in 
2004 (top), 2005 (middle), and 2015 (bottom). 



 

 

Figure 13. Heatmaps illustrating daily PM2.5 AQI values for Deltana (top) and Venetie (bottom) as estimated by our models. The 
x and y axes of the heatmaps correspond to date (between July 1 and September 1) and year (between 2001 and 2015). The AQI 
color scheme follows the scheme that is used in Figure 11. 

4. Discussion  

4.1. Performance of the proposed method and sources of uncertainty  

Our product assessment shows that our method is capable of capturing poor air 

conditions that are attributable to wildfire smoke. Overall across the 15-year period, our 

simulated PM2.5 concentrations correlate well with PM2.5 concentrations as recorded by EPA’s 

air quality monitoring stations, particularly during fire-intensive years when mean fire season air 

quality is low (e.g., 2004 and 2015; Table 2, Fig. 3, and Supplementary Fig. 2). The good 

consistency between our model estimates and EPA’s station data also indicates that wildfire-

emitted PM2.5 dominates the spatio-temporal patterns of PM2.5 concentration over Alaska, 

since, unlike our models, EPA’s station data record surface-level PM2.5 concentrations from all 

sources.  



Using EPA’s air quality monitoring station data as a common reference, we also 

compared our HYSPLIT-based PM2.5 concentration product with two existing datasets, 

GlobalPM and FireWork. Our intercomparisons reveal that FireWork substantially 

underestimates wildfire-induced PM2.5 concentrations in Alaska (Fig. 3). The GlobalPM 

product, in contrast, shows good consistency with EPA’s station data when the latter was 

converted to monthly mean values (Fig. 5). It also has high consistency with our HYSPLIT-

based estimates, especially during fire-active months and years (Fig. 4, Supplementary Tables 1 

and 2). However, the spatial pattern of PM2.5 concentration as reported by our models and 

GlobalPM differ noticeably (Supplementary Fig. 3). While we do not have definitive evidence 

showing which one of the two products are more reliable beyond the areas where no EPA 

stations are present, the fact that high-elevation areas, including the Brooks Range and the 

Alaska Range, are reported to have high PM2.5 concentration in August 2004 indicates that 

GlobalPM is more likely to be less reliable than our model estimates in Alaska than otherwise 

(since PM2.5 concentrations tend to decrease with increasing elevation (Peng et al., 2015; Silcox 

et al., 2012; Wen et al., 2022)).  

Despite the overall good performance, noticeable disagreements still exist between the 

simulated results and the station-recorded PM2.5 concentration data. For example, our 

simulations show a tendency to overestimate PM2.5 concentrations when air quality is poor and 

underestimate when air quality is good (as shown by NMB in Table 2). Moreover, the magnitude 

of the simulated PM2.5 concentrations during the high concentration days is often not consistent 

with the recorded PM2.5 concentrations (Fig. 3). Additionally, while the correlation between 

estimated and recorded PM2.5 concentrations tends to be high when air quality is poor, the 

correlation is weak when annual mean PM2.5 concentrations are low (as shown by R in Table 2). 

We believe these disagreements are attributed to multiple factors which can be divided into two 

groups depending on if it is related to HYSPLIT.  

First, there are sources of uncertainty that are related to HYSPLIT, including the 

parameterization of injection height. Injection height has been known to affect the long-distance 

transport of airborne pollutants (Colarco et al., 2004) and it is affected by a series of conditions, 

including fuel type (Val Martin et al., 2010), fire intensity (Val Martin et al., 2012), and 

atmospheric structure (Val Martin et al., 2010). In this project, for simplicity purposes, this 

parameter was set to a single value (i.e., 100 m). Due to its wide spatial coverage, satellite-based 



remote sensing, when coupled with in situ observations of plume dynamics, seems to be a 

feasible method to obtain these values. Studies based on Multiangle Imaging SpectroRadiometer 

(MISR) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) 

datasets demonstrate such a potential. While there is no dataset that reports injection height 

consistently for wildfires in the high northern latitudes, there have been studies on the empirical 

relationships between wildfire injection height and fire radiative power (FRP), including Val 

Martin et al. (2010) and Sofiev et al. (2012). Built on the resultant knowledge, efforts have been 

taken to incorporate remotely sensed FRP into HYSPLIT modeling as a proxy for injection 

height on projects that focused on a few fire events (e.g., Li et al., 2020). We expect that future 

HYSPLIT simulations with dynamic parameterization of injection height (i.e., setting different 

injection height values for separate fires) over large spatial scales can further improve the 

performance of our proposed method.  

In addition to injection height, the peaks may not be further captured in the model due to 

the particles being averaged throughout the output grid, which has a horizontal resolution of 0.1◦ 

× 0.1◦. Measurements made at different spatial scales can be substantially different over the same 

area when the spatial heterogeneity is high (Marceau et al., 1994). In our project, our simulation 

was done at 0.1◦, which is much larger than the area that an air quality monitoring station covers. 

In urban environments, air quality tends to be highly heterogenic due to the high spatial 

variability in emissions and urban morphology (Apte et al., 2017; Che et al., 2023).  

Moreover, our simulations specifically target the emissions that were emitted by 

wildfires, whereas station-recorded PM2.5 concentrations reflect air quality that is controlled by 

not just wildfire emissions but emissions from other anthropogenic sources, including 

automobile exhaust and heat/electricity productions. This could explain why our simulated 

concentrations are consistently lower than the recorded concentrations during the years when fire 

activities are low (as shown by the NMB values in Table 2) and may be the main reason why the 

correlation between simulated and observed concentrations during low-fire years tends to be low 

(as shown by the R values in Table 2 and Supplementary Fig. 2). Moreover, while our models 

only account for emissions from wildfires that occurred in Alaska, both reference datasets are 

affected by wildfires that are located elsewhere. Long-distance transport of wildfire smoke is not 

uncommon in high northern latitude regions (Colarco et al., 2004; Cottle et al., 2014; Miller et 

al., 2011). Canadian boreal forests are similarly impacted by wildfires and have experienced 



several extreme fire seasons in the last two decades (Supplementary Fig. 4). Even over greater 

distances, wildfire smoke from Siberian fires has been documented to reach Alaska (Damoah et 

al., 2004). Alaska, therefore, is frequently affected by wildfire smoke coming from other boreal 

regions, which will reduce the consistency between our simulation results and the observed data.  

Additional sources of uncertainty include neglected heterogeneous chemistry (which can 

lead to aerosol formation and loss) and uncertainties that are associated with NARR. 

Meteorological inputs drive smoke-simulated transport processes involving advection and 

turbulence. The relatively coarse resolution of NARR of 32 km is insufficient to capture local-

scale meteorological circulation patterns within mountainous terrain. However, the NARR is 

used here since it is the highest resolution meteorological field available for driving HYSPLIT 

model simulations covering the entire 15-year timespan of this study. Finally, errors in wind 

velocity will cause errors in the transport of smoke plumes. 

 

4.2. Spatio-temporal patterns of PM2.5 concentrations in Alaska and scientific significance of 

proposed method  

As our spatio-temporal analyses of the simulated PM2.5 concentrations reveal, wildfire’s 

impact on air quality over Alaska is highly dependent on the intensity of wildfire activities. This 

is not surprising since more fires tend to lead to more pollutant emissions. However, our analyses 

show that there is great spatial heterogeneity in the fire-induced PM2.5 distribution. Specifically, 

high-elevation areas (such as the Alaska Range and the Brooks Range) as well as the areas north 

of the Brooks Range and south of the Alaska Range are much less affected by wildfires even 

during the high fire months or years (Figs. 6-9). We believe this is the consequence of both 

Alaska’s wildfire distribution and the terrain. Located in Interior Alaska is a vast expanse of 

boreal forests, which are known to be fire-active (Fig. 1; Kasischke and Turetsky (2006). This 

leads to the fact that Interior Alaska suffers the highest impacts from wildfire smoke because of 

its spatial proximity. Moreover, the spatial variation in elevation is responsible for determining 

how areas are affected by wildfire smoke beyond Interior Alaska. It is apparent that the two 

prominent mountain ranges in Alaska (i.e., the Brooks Range and the Alaska Range) effectively 

limit the transport of fire-emitted PM2.5 over the mountain ranges into areas beyond. 

Additionally, we believe that atmospheric circulation also plays a key role in affecting the spatio-

temporal distribution of fire-induced PM2.5 concentration in Alaska. Through the time-lapse 



animations that we generated based on daily PM2.5 concentration maps (not shown here), we 

found that dominant winds over Alaska had a clear effect in determining the direction and range 

of the dispersion of fire-emitted PM2.5 plumes.  

Our visual assessment shows that MC and ND, two metrics that we adopted to quantify 

wildfire smoke’s impact on air quality, appear to be in good accordance during fire-intensive 

months or years. In other words, when fires are pervasive, PM2.5 concentrations over much of 

Alaska are generally sustainably high. In contrast, during the months or years when fires are less 

pervasive, ND is rarely high, whereas localized MC hotspots (i.e., with high MC values) can still 

occur near individual fire events (Figs. 6-9). This means that while the long-term effect imposed 

by fire events in low fire seasons or years may be low, the residents living adjacent to the fire 

scars may still be vulnerable to the negative impact associated with immediate increases in 

PM2.5 concentration during the localized fire and smoke episodes. In other words, health outputs 

that are known to be responsive to such outbursts, such as asthma, can still be triggered during 

low fire seasons or years.  

The PM2.5 concentrations maps that we produced are the first gridded wildfire smoke 

dataset specifically for Alaska over a 15-year time period. This dataset reveals the spatio-

temporal patterns of the impacts of wildfires on the regional air quality in Alaska. Considering 

the estimated fire-induced PM2.5 concentrations are in good accordance with the overall PM2.5 

concentrations, particularly during the fire-active periods, our product offers a direct line of 

evidence indicating that wildfire is the dominant driver of PM2.5 concentrations over Alaska 

during the fire season. This dataset is useful for rural communities because it can quantify the 

impact of wildfires on air quality in remote areas in Alaska. Our analyses based on the generated 

maps show that wildfires in Alaska impose a substantial threat to the health of Alaskan rural 

residents. The majority (88 %) of Alaskan rural communities have experienced at least one day 

with “Unhealthy” air quality or worse during the 15-year period (Fig. 11a). And about half of 

rural communities in Alaska experience worse quality than the state average in terms of the 

number of high PM2.5 concentration days (Fig. 11b). Considering most of these communities are 

far from medical facilities, not connected by roads, and serviced by limited infrastructure (such 

as wireless internet and cell service), rural populations may be unlikely to be able to receive 

necessary health services during ongoing wildfire episodes. Due to similar reasons, we also 

expect that the smoke-induced health outcomes that occurred in these rural communities could 



be unlikely to be reported and accounted for in time since EPA’s air monitoring stations are not 

located in or near many rural Alaskan communities. Our simulations, as demonstrated in this 

project, are able to provide historical PM2.5 concentrations for which wildfires are responsible. 

This, coupled with the fact that fire is the most potent contributor to air quality in Alaskan rural 

communities, allows the simulated PM2.5 concentrations to resemble the actual PM2.5 

concentrations, especially on high-concentration days.  

In addition to revealing the negative impact of wildfire smoke on Alaska’s air quality, our 

dataset can be analyzed in different settings to inform us of the spatio-temporal patterns of the 

variation of wildfires’ impact. As shown in Fig. 12, intra-annual variation trajectories of PM2.5 

concentrations can be established based on our dataset, which allows us to identify the location 

and time of the high PM2.5 concentration episodes. The simulated PM2.5 concentrations can 

also be used together with epidemiological information to investigate the health and associated 

economic impacts of historical wildfires. The daily PM2.5 concentrations can be summarized 

into AQI categories, where the long-term temporal distribution of high-concentration days can be 

revealed for given communities, as is demonstrated in Fig. 13.  

 

5. Conclusion  

In this study, through an integration of HYSPLIT, WFEIS, and an Arctic-oriented fire 

product (ABoVE WDoB), we simulated fire-induced daily PM2.5 concentrations at the surface 

level for the entire state of Alaska. Our model estimates are in good accordance with the 

reference datasets that we employed. Our results represent the first PM2.5 concentration maps 

for Alaska over a 15-year time span and they have strong implications for improving the 

understanding of Alaskan wildfires’ impacts on the regional air quality. Expanding upon our 

presented study, future work can be carried out on several important fronts. First, our HYSPLIT 

models can be improved to yield better results. In the current project, for simplicity purposes, 

many important parameters were set uniformly across different model runs, including injection 

height, heterogeneous chemistry, and dry/wet deposition. We expect that higher model 

performance can be achieved through dynamic parameterization of injection height and enabling 

heterogeneous chemistry. Second, wildfires from domains outside Alaska should be included. 

Alaska is only a small part of the circumpolar boreal and Arctic domain, within which wildfires 

are common. A broader smoke emission and transport framework taking into account the entire 



circumpolar domain will no doubt reveal more critical insights on northern wildfires’ substantial 

impacts at the continental and even global levels, which is relevant to both human exposure to 

fire smoke pollution and fire’s impact on climate. Third, new models linking AOD to PM2.5 

concentration specific to Alaska accounting for fire occurrence and smoke should be developed. 

Even though there are existing datasets, such as GlobalPM which we used in our project as a 

reference dataset, that cover the high northern latitudes, they could not do so convincingly at the 

daily time step yet. One of the reasons for that is a lack of PM2.5 concentration data that are 

measured on the ground. We believe that inexpensive PM2.5 sensors, such as PurpleAir, could 

be a vital contributor on that front. An increasing abundance of reference data will allow us to 

build more robust intercomparisons from several independent lines of evidence which are critical 

for the vast areas in the high northern latitudes. Fourth, epidemiological analyses targeting 

Alaskan residents, particularly those who live in rural areas, can be performed utilizing this 15-

year smoke product. Recent research has highlighted the need to examine the impacts of wildfire 

smoke on rural populations in Alaska (Hahn et al., 2021), which was previously not able to 

accomplish due to an absence of gridded and consistently produced PM2.5 concentration maps. 

With our results as a foundational piece, improved knowledge about how fire-emitted PM2.5 

affects the health of Alaska’s rural populations is expected, which will, in turn, serve as a crucial 

prerequisite for the development of effective corresponding mitigation efforts.  
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Appendix A. Supplementary data  

 
Supplementary Figure 1. Elevation of Alaska visualized based on the US Geological Service’s 3D Elevation Program (3DEP) 
digital elevation model dataset. 
  



 

 

 

  

Supplementary Figure 2. Scatterplot demonstrating the relationship between yearly mean PM2.5 concentration as recorded by 
EPA air monitoring stations (calculated by averaging daily mean PM2.5 concentrations) and R as shown in Table 2. R was 
calculated based on paired estimated and recorded daily mean PM2.5 concentrations. 



Supplementary Table 1. A comparison of monthly mean PM2.5 concentrations as calculated based on our models (Column 3) and 
GlobalPM (Column 4) calculated over all overlapping areas across Alaska. 

Year Month 
HYSPLIT 

Monthly Mean PM2.5 (µm/m3) 

GlobalPM  

Monthly Mean PM2.5 (µm/m3) 

2001 5 0.04 3.68 

2001 6 1.46 3.96 

2001 7 7.12 3.92 

2001 8 0.10 4.44 

2001 9 1.27 3.72 

2002 5 9.50 7.36 

2002 6 4.98 4.81 

2002 7 3.00 5.29 

2002 8 10.50 8.20 

2002 9 0.05 3.96 

2003 5 0.27 5.77 

2003 6 2.68 4.60 

2003 7 2.42 5.62 

2003 8 1.14 5.19 

2003 9 0.04 2.99 

2004 5 0.00 4.10 

2004 6 27.03 23.65 

2004 7 28.51 31.27 

2004 8 22.06 24.95 

2004 9 1.90 9.07 

2005 5 0.20 3.88 

2005 6 9.36 8.19 

2005 7 11.87 10.62 

2005 8 32.39 17.16 

2005 9 0.40 4.27 

2006 5 0.06 3.82 

2006 6 2.24 3.88 



2006 7 0.52 4.20 

2006 8 0.04 3.83 

2006 9 0.00 4.10 

2007 5 2.40 3.48 

2007 6 1.71 3.68 

2007 7 2.08 4.54 

2007 8 0.09 4.66 

2007 9 0.13 3.66 

2008 5 0.20 3.83 

2008 6 0.13 3.49 

2008 7 1.06 3.27 

2008 8 0.01 3.93 

2008 9 0.05 2.83 

2009 5 4.01 5.51 

2009 6 2.31 4.92 

2009 7 17.16 13.17 

2009 8 16.67 12.52 

2009 9 0.02 3.33 

2010 5 5.14 5.17 

2010 6 3.09 4.84 

2010 7 1.54 4.76 

2010 8 0.50 2.91 

2010 9 0.26 3.13 

2011 5 5.23 4.38 

2011 6 1.66 3.47 

2011 7 0.25 3.60 

2011 8 0.34 2.73 

2011 9 0.00 2.31 

2012 5 1.83 3.09 

2012 6 1.04 3.13 



2012 7 0.18 3.24 

2012 8 2.68 4.20 

2012 9 3.59 2.63 

2013 5 0.26 3.69 

2013 6 10.33 6.57 

2013 7 2.73 4.53 

2013 8 3.13 4.24 

2013 9 0.01 2.86 

2014 5 3.48 5.87 

2014 6 0.22 2.81 

2014 7 0.04 3.63 

2014 8 0.04 3.66 

2014 9 0.01 3.12 

2015 5 0.28 5.29 

2015 6 33.38 8.04 

2015 7 25.40 13.79 

2015 8 5.85 4.72 

2015 9 0.23 2.17 

 
Supplementary Table 2. A comparison of yearly mean PM2.5 concentrations as calculated based on our models (Column 3) and 
GlobalPM (Column 4) calculated over all overlapping areas across Alaska. 

Year 
HYSPLIT 

Monthly Mean PM2.5 (µm/m3) 

GlobalPM 

Monthly Mean PM2.5 (µm/m3) 

2001 3.19 3.85 

2002 6.07 6.09 

2003 1.47 4.96 

2004 19.65 22.19 

2005 11.11 8.95 

2006 1.03 3.98 

2007 1.27 4.01 

2008 0.39 3.42 



2009 9.82 8.91 

2010 2.10 4.16 

2011 1.83 3.55 

2012 1.42 3.24 

2013 4.35 4.81 

2014 0.96 3.97 

2015 16.68 7.86 

 

  



 
Supplementary Figure 3. Monthly mean PM2.5 concentrations as depicted by our HYSPLIT models and the GlobalPM dataset for 
June, July, and August of 2004. 
  



 

 

 

 

 

Supplementary Figure 4. Distribution of wildfires in Alaska and Canada since the 1940s. Wildfire history data for Alaska and 
Canada were acquired from ALFD and the Canadian National Fire Database, respectively. 
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